Derived Theta-stratifications and the D-equivalence conjecture

Daniel Halpern-Leistner

12-Jan-2021, 15:00-16:00 (5 years ago)

Abstract: Every vector bundle on a smooth curve has a canonical filtration, called the Harder-Narasimhan filtration, and the moduli of all vector bundles admits a stratification based on the properties of the Harder-Narasimhan filtration at each point. The theory of Theta-stratifications formulates this structure on a general algebraic stack. I will discuss how to characterize stratifications of this kind, and why their local cohomology is particularly well-behaved. I will then explain how Theta-stratifications are part of a recent proof of a case of the D-equivalence conjecture: for any projective Calabi-Yau manifold X that is birationally equivalent to a moduli space of semistable coherent sheaves on a K3 surface, the derived category of coherent sheaves on X is equivalent to the derived category of this moduli space. This confirms a prediction from homological mirror symmetry for this class of compact Calabi-Yau manifold

algebraic geometrydifferential geometrygeometric topologysymplectic geometry

Audience: researchers in the topic


Free Mathematics Seminar

Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.

The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.

Organizers: Jonny Evans*, Ailsa Keating, Yanki Lekili*
*contact for this listing

Export talk to